Az amerikai Broad Institute, valamint a Chan Zuckerberg Initiative támogatását is élvező projekt keretében végzett kutatómunka célja, hogy a lehető legtökéletesebbre fejlessze azt a korábban kidolgozott, világviszonylatban is egyedülálló egysejt-analitikai eljárást, amely a szervezet építőköveinek egyedi elemzésével a legapróbb eltéréseket is képes felfedezni a biológiai mintákban, lehetővé téve ezzel a sejtbiológiai folyamatok és a kóros elváltozások jobb megértését. Az immár teljesen automatizáltan és rendkívüli precizitással alkalmazott módszerrel a kutatók az egyes sejtek szintjén kifejeződő egyedi jellegeket, fenotípusokat elemzik.
A több milliárdnyi sejtből álló biológiai mintákban felfedezhető sejtszintű eltérések jól tükrözik a szervezet működésének hibáit, de ugyanígy például a gyógyszeres kezelések sejtszintű hatásait is. A Horváth Péter vezetésével összeállított komplex mikroszkóprendszer a MI segítségével bármilyen szövetmintában képes teljesen automatizáltan, emberi beavatkozás nélkül megtalálni a környezetüktől eltérő egyedi sejteket, amiket egy szintén MI vezérelt, speciális mikroszkóp segítségével rendkívül precízen ki is vág a mintából, hogy azután azt a kutatók részletes analitikai vizsgálatoknak vethessék alá.
Egy a Nature Communicationsben közelmúltban megjelent publikációban a kutatócsoport egy olyan gyógyszerszűrési munkát mutat be, amelynek keretében mintegy 8 millió képből álló mintán tanították a mesterséges intelligenciát a különféle gyógyszeres kezelések hatására megváltozó sejtfenotípusok felismerésére.
A teljesen automatizálttá tett sejtfelismerési és sejtkinyerési eljárás kulcsa a szegedi kutatók által kialakított mikroszkóprendszerek folyamatos tökéletesítése, és az ezzel összekapcsolt mesterségesintelligencia-algoritmusok rohamléptékű fejlődése. A kutatócsoport komoly mérföldkőnek tekinthető eljárása, az automatizált sejtkinyerés alapja kétféle mikroszkóp kombinálása: az egyik, egy rendkívül nagy felbontású eszköz, MI-algoritmus segítségével rendkívül pontosan kijelöli a környezetüktől eltérő sejtek határvonalait, majd egy kisebb felbontású, de igen nagy teljesítményű másik mikroszkóp a mesterséges intelligencia segítségével megtalálja ugyanazokat a sejteket, és a mikrométer töredékénél is kisebb pontossággal kiemeli azokat a mintából.
A teljesen automatizált folyamat – melyet egy márciusba a Briefings in Bioinformatics című folyóiratban megjelent cikkben mutattak be – hatalmas előrelépés a sejtszintű diagnosztikában, mert lehetővé teszi, hogy akár több ezer mintát és ezen belül több tízmillió sejtet vizsgáljanak meg naponta.
Ez teszi többek között lehetővé, hogy a kutatócsoport egysejt-analitikai eljárását a konzorcium egyes partnerei kísérleti jelleggel már a melanóma személyre szabott kezelésében is alkalmazzák.
Kövesse az Economx.hu-t!
Értesüljön időben a legfontosabb gazdasági és pénzügyi hírekről! Kövessen minket Facebookon, Instagramon vagy iratkozzon fel Google News és YouTube-csatornánkra!
Legolvasottabb
Megvan a NASA legújabb vezetője, el sem hiszi, honnan jött
Óriási zuhanás a kutakon, ekkor érdemes tankolni
Pénzes boríték helyett keserű szájíz: sok a dühös munkavállaló
Megjött a döntés: ez történik csütörtöktől az üzemanyagárakkal
Medián: A fiatalokat a Tisza, az idősebbeket a Fidesz viszi
Jöhet az ónos eső: ezekben a vármegyében nem árt vigyázni
A világhírű grófi család tőzsdére vitte a kastélyait és a szigeteit is
Csúcson a karácsonyi ajándékroham: ezek a termékek fogynak most a leggyorsabban
Kiskapu a szankciókban: Washington kivételt tett Japánnal